The perlcritic tool is often your first defense against awk­ward, hard to read, error-​prone, or uncon­ven­tion­al con­structs in your code,” per its descrip­tion. It’s part of a class of pro­grams his­tor­i­cal­ly known as lin­ters, so-​called because like a clothes dry­er machine’s lint trap, they detect small errors with big effects.” (Another such lin­ter is perltidy, which I’ve ref­er­enced in the past.)

You can use perlcritic at the com­mand line, inte­grat­ed with your edi­tor, as a git pre-​commit hook, or (my pref­er­ence) as part of your author tests. It’s dri­ven by poli­cies, indi­vid­ual mod­ules that check your code against a par­tic­u­lar rec­om­men­da­tion, many of them from Damian Conway’s Perl Best Practices (2005). Those poli­cies, in turn, are enabled by PPI, a library that trans­forms Perl code into doc­u­ments that can be pro­gram­mat­i­cal­ly exam­ined and manip­u­lat­ed much like the Document Object Model (DOM) is used to pro­gram­mat­i­cal­ly access web pages.

perlcritic enables the fol­low­ing poli­cies by default unless you cus­tomize its con­fig­u­ra­tion or install more. These are just the gen­tle” (sever­i­ty lev­el 5) poli­cies, so con­sid­er them the bare min­i­mum in detect­ing bad prac­tices. The full set of includ­ed poli­cies goes much deep­er, ratch­et­ing up the sever­i­ty to stern,” harsh,” cru­el,” and bru­tal.” They’re fur­ther orga­nized accord­ing to themes so that you might selec­tive­ly review your code against issues like secu­ri­ty, main­te­nance, com­plex­i­ty, and bug prevention.

My favorite above is prob­a­bly ProhibitEvilModules. Aside from the col­or­ful name, a devel­op­ment team can use it to steer peo­ple towards an organization’s favored solu­tions rather than dep­re­cat­ed, bug­gy, unsup­port­ed, or inse­cure” ones. By default, it pro­hibits Class::ISA, Pod::Plainer, Shell, and Switch, but you should curate and con­fig­ure a list with­in your team.

Speaking of work­ing with­in a team, although perlcritic is meant to be a vital tool to ensure good prac­tices, it’s no sub­sti­tute for man­u­al peer code review. Those reviews can lead to the cre­ation or adop­tion of new auto­mat­ed poli­cies to save time and set­tle argu­ments, but such work should be done col­lab­o­ra­tive­ly after achiev­ing some kind of con­sen­sus. This is true whether you’re a team of employ­ees work­ing on pro­pri­etary soft­ware or a group of vol­un­teers devel­op­ing open source.

Of course, rea­son­able peo­ple can and do dis­agree over any of the includ­ed poli­cies, but as a rea­son­able per­son, you should have good rea­sons to dis­agree before you either con­fig­ure perlcritic appro­pri­ate­ly or selec­tive­ly and know­ing­ly bend the rules where required. Other CPAN authors have even pro­vid­ed their own addi­tions to perlcritic, so it’s worth search­ing CPAN under Perl::Critic::Policy::” for more exam­ples. In par­tic­u­lar, these community-​inspired poli­cies group a num­ber of rec­om­men­da­tions from Perl devel­op­ers on Internet Relay Chat (IRC).

Personally, although I adhere to my employer’s stan­dard­ized con­fig­u­ra­tion when test­ing and review­ing code, I like to run perlcritic on the bru­tal” set­ting before com­mit­ting my own. What do you pre­fer? Let me know in the com­ments below.


Cover image: Everyone’s a crit­ic — graifit­ti under Mancunian Way in Manchester” by Alex Pepperhill is licensed under CC BY-​ND 2.0

Introduction: The current state of play

Perl has very min­i­mal” sup­port for object-​oriented (OO) pro­gram­ming out of the box by its own admis­sion. It’s class-​based but class­es are just pack­ages used dif­fer­ent­ly. Objects are just data struc­tures blessed into a class, meth­ods are just sub­rou­tines whose first argu­ment is an object or class name, and attributes/​properties are often just the key-​value pair of a hash stored in the object. (This last is a fea­ture shared with JavaScript, whose prototype-​based objects are just col­lec­tions of key-​value pairs with the keys addressed as prop­er­ties.) You’ve got poly­mor­phism, inher­i­tance, and it’s up to you to enforce encap­su­la­tion.

This can take a lot of work to use effec­tive­ly. To help address that, sev­er­al sys­tems have been devel­oped over the years to reduce boil­er­plate and pro­vide mod­ern (or post­mod­ern”) OO fea­tures that devel­op­ers from oth­er lan­guages expect. My favorite for a while has been Moo: it’s got the fea­tures I need 90% of the time like built-​in con­struc­tors, roles (an alter­na­tive to com­po­si­tion through inher­i­tance), attrib­ut­es, type val­i­da­tion, and method mod­i­fiers for enhanced poly­mor­phism. And if I need to dig around in the guts of class­es, attrib­ut­es, and the like I can always upgrade to Moo’s big broth­er Moose and its meta-​object pro­to­col with min­i­mal effort.

Corinna, Object::Pad, and porting dbcritic

But there’s a new kid on the block. Curtis Ovid” Poe has been spear­head­ing Corinna, an effort to bring effec­tive OO to the Perl core and leapfrog [empha­sis his] the capa­bil­i­ties of many OO lan­guages today.” No CPAN mod­ules, no chain of depen­den­cies; just sol­id OO fea­tures and syn­tax built-​in. And while Corinna is a ways off from ship­ping, Paul LeoNerd” Evans (maybe I should get a cool nick­name too?) has been imple­ment­ing some of these ideas as new Perl key­word syn­tax in his Object::Pad module.

Both Ovid and LeoNerd have been ask­ing devel­op­ers to try out Object::Pad, not just as a new toy, but to get feed­back on what works and what needs to be added. So I thought I’d try port­ing an old­er small Moo-​based project named dbcrit­ic to this new real­i­ty. In the process, I learned some of the advan­tages and dis­ad­van­tages of work­ing with Object::Pad. Hopefully, this can inform both it and Corinna’s evo­lu­tion as well as oth­er curi­ous devel­op­ers’ eval­u­a­tions. You can fol­low my cod­ing efforts in this GitHub branch.

First, the mar­quee result: the code for App::DBCritic (the class I start­ed with) is clean­er and short­er, with 33 lines shaved off so far. Mainly this is due to Object::Pad’s more con­cise attribute syn­tax (called slots” in its doc­u­men­ta­tion) and lack of explic­it sup­port for Moo’s attribute coer­cion. I only used the lat­ter for one attribute in the Moo ver­sion and I’m not sure it worked par­tic­u­lar­ly well, so it was­n’t hard to jet­ti­son. But if your code sup­ports coer­cions exten­sive­ly, you’ll have to look into Object::Pad’s BUILD or ADJUST phase blocks for now.

Before, a Moo attribute with var­i­ous options:

has schema => (
    is        => 'ro',
    coerce    => 1,
    lazy      => 1,
    default   => \&_build_schema,
    coerce    => \&_coerce_schema,
    predicate => 1,
);

After, an Object::Pad slot. No coer­cion and builder code is han­dled in a lat­er ADJUST block:

has $schema :reader :param = undef;

Speaking of ADJUST blocks, it took a lit­tle bit of insight from the #perl IRC chan­nel to real­ize that they were the appro­pri­ate place for set­ting slot defaults that are com­put­ed from oth­er slots. Previously I was using a maze of depen­den­cies mix­ing Moo lazy attrib­ut­es and builder meth­ods. Clarifying the main set of option­al con­struc­tor argu­ments into a sin­gle ADJUST block helped untan­gle things, so this might be an indi­ca­tion that lazy attrib­ut­es are an antipat­tern when try­ing to write clean code. It’s also worth not­ing that Object::Pad ADJUST blocks run on object con­struc­tion, where­as Moo lazy attrib­ut­es are only built when need­ed. This tends to mat­ter for data­base access.

The ADJUST block for the $schema slot:

ADJUST {
    my @connect_info = ( $dsn, $username, $password );
    if ($class_name and eval "require $class_name") {
        $schema = $class_name->connect(@connect_info);
    }
    elsif ( not ( blessed($schema) and $schema->isa('DBIx::Class::Schema') ) ) {
        local $SIG{__WARN__} = sub {
            if ( $_[0] !~ / has no primary key at /ms ) {
                print {*STDERR} $_[0];
            }
        };
        $schema = App::DBCritic::Loader->connect(@connect_info);
    }
    croak 'No schema defined' if not $schema;
}

Object::Pad’s slots have one great advan­tage over Moo and Moose attrib­ut­es: they direct­ly sup­port Perl array and hash data struc­tures, while the lat­ter only sup­ports scalars and ref­er­ences con­tained in scalars. This means meth­ods in your class can elim­i­nate a deref­er­enc­ing step, again lead­ing to clean­er code. I used this specif­i­cal­ly in the @violations array and %elements hash slots and was very pleased with the results.

The @violations and %elements slots and their ADJUST blocks:

has %elements;

ADJUST {
    %elements = (
        Schema       => [$schema],
        ResultSource => [ map { $schema->source($_) } $schema->sources ],
        ResultSet    => [ map { $schema->resultset($_) } $schema->sources ],
    );
}

has @violations;

ADJUST {
    @violations = map { $self->_policy_loop( $_, $elements{$_} ) }
        keys %elements;
}

method violations { wantarray ? @violations : \@violations }

Issues

I did have some devel­op­ment life­cy­cle issues with Object::Pad, but they’re main­ly a result of its future-​facing syn­tax. I had to give up using perltidy and perlcritic in my build and test phas­es, respec­tive­ly: perltidy does­n’t under­stand slot attrib­ut­es like :reader and :param and will emit an error file (but code still com­piles), and sev­er­al of the perlcritic poli­cies I use report prob­lems because its PPI pars­er does­n’t rec­og­nize the new syn­tax. I could add excep­tions in the perlcriticrc file and lit­ter my code with more ## no critic anno­ta­tions than it already had, but at this point, it was eas­i­er to just dis­able it entirely.

Another thing I had to dis­able for now was my Dist::Zilla::Plugin::Test::UnusedVars-gen­er­at­ed Test::Vars test for detect­ing unused vari­ables, as it reports mul­ti­ple fail­ures for the hid­den @(Object::Pad/slots) vari­able. It does have options for ignor­ing cer­tain vari­ables, though, so I can explore using those and pos­si­bly file a pull request to ignore that vari­able by default.

Conclusion: The future looks bright

Overall I’m sat­is­fied with Object::Pad and by exten­sion some of the syn­tax that Corinna will intro­duce. I’m going to try port­ing the rest of dbcrit­ic and see if I can work around the issues I list­ed above with­out giv­ing up the kwali­tee improve­ment tools I’m used to. I’ll post my find­ings if I feel it mer­its anoth­er blog.

What do you think? Is this the future of object-​oriented Perl? Let me know in the com­ments below.

circus theme party

Last week’s arti­cle got a great response on Hacker News, and this par­tic­u­lar com­ment caught my eye:

I think this is the real point about Perl code read­abil­i­ty: it gives you enough flex­i­bil­i­ty to do things how­ev­er you like, and as a result many pro­gram­mers are faced with a mir­ror that reflects their own bad prac­tices back at them.

orev, Hacker News

This is why Damian Conway’s Perl Best Practices (2005) is one of my favorite books and perlcritic, the code ana­lyz­er is one of my favorite tools. (Though the for­mer could do with an update and the lat­ter includes poli­cies that con­tra­dict Conway.) Point perlcritic at your code, maybe add some oth­er poli­cies that agree with your house style, and grad­u­al­ly ratch­et up the sever­i­ty lev­el from gen­tle” to bru­tal.” All kinds of bad juju will come to light, from waste­ful­ly using grep to hav­ing too many sub­rou­tine argu­ments to catch­ing pri­vate vari­able use from oth­er pack­ages. perlcritic offers a use­ful base­line of con­duct and you can always cus­tomize its con­fig­u­ra­tion to your own tastes.

The oth­er con­for­mance tool in a Perl devel­op­er’s belt is perltidy, and it too has a Conway-​compatible con­fig­u­ra­tion as well as its default Perl Style Guide set­tings. I’ve found that more than any­thing else, perltidy helps set­tle argu­ments both between devel­op­ers and between their code in help­ing to avoid exces­sive merge conflicts.

But apart from extra tools, Perl the lan­guage itself can be bent and even bro­ken to suit just about any­one’s agen­da. Those used to more bondage-​and-​discipline lan­guages (hi, Java!) might feel revul­sion at the lengths to which this has some­times been tak­en, but per the quote above this is less an indict­ment of the lan­guage and more of its less method­i­cal pro­gram­mers.

Some of this behav­ior can be reha­bil­i­tat­ed with perlcritic and perltidy, but what about oth­er sins attrib­uted to Perl? Here are a few peren­ni­al favorites”:

Objects and Object-​Oriented Programming

Perl has a min­i­mal­ist object sys­tem based on earlier-​available lan­guage con­cepts like data struc­tures (often hash­es, which it has in com­mon with JavaScript), pack­ages, and sub­rou­tines. Since Perl 5’s release in 1994 much ver­bose OO code has been writ­ten using these tools.

The good news is that since 2007 we’ve had a sophis­ti­cat­ed metaobject-​protocol-​based lay­er on top of them called Moose, since 2010 a light­weight but forward-​compatible sys­tem called Moo, and a cou­ple of even tinier options as described in the Perl OO Tutorial. Waiting in the wings is Corinna, an effort to bring next-​generation object capa­bil­i­ties into the Perl core itself, and Object::Pad, a test­bed for some of the ideas in Corinna that you can use today in cur­rent code. (Really, please try it — the author needs feed­back!)

All this is to say that 99% of the time you nev­er need trou­ble your­self with bless, con­struc­tors, or writ­ing acces­sors for class or object attrib­ut­es. Smarter peo­ple than me have done the work for you, and you might even find a con­cept or three that you wish oth­er lan­guages had.

Contexts

There are two major ones: list and scalar. Another way to think of it is plur­al” vs. sin­gu­lar” in English, which is hope­ful­ly a thing you’re famil­iar with as you’re read­ing this blog.

Some func­tions in Perl act dif­fer­ent­ly depend­ing on whether the expect­ed return val­ue is a list or a scalar, and a func­tion will pro­vide a list or scalar con­text to its argu­ments. Mostly these act just as you would expect or would like them to, and you can find out how a func­tion behaves by read­ing its doc­u­men­ta­tion. Your own func­tions can behave like this too, but there’s usu­al­ly no need as both scalars and lists are auto­mat­i­cal­ly inter­pret­ed into lists.” Again, Perl’s DWIMmery at work.

Subroutine and Method Arguments

I’ve already writ­ten about this. Twice. And pre­sent­ed about it. Twice. The short ver­sion: Perl has sig­na­tures, but they’ve been con­sid­ered exper­i­men­tal for a while. In the mean­time, there are alter­na­tives on CPAN. You can even have type con­straints if you want.


I’ll leave you with this: Over the past month, Neil Bowers of the Perl Steering Council has been col­lect­ing quirks like these from Perl devel­op­ers. The PSC is review­ing this col­lec­tion for poten­tial doc­u­men­ta­tion fix­es, bug fix­es, fur­ther dis­cus­sion, etc. I would­n’t expect to see any fun­da­men­tal changes to the lan­guage out of this effort, but it’s a good sign that poten­tial­ly con­fus­ing fea­tures are being addressed.